$\langle N O \rangle$ RS

BY

Er. Lalit Sharma

B.Tech (Electrical) Ex. Lecturer Govt. Engg. College Bathinda Physics Faculty Ranker's Point, Bathinda Arun Garg

M.Sc. Physics Gold Medalist Physics Faculty Ranker's Point, Bathinda

Class:10+1 Unit: II Topic: Kinematics

SYLLABUS: UNIT-II-C,D

Frame of reference. Motion in a straight line: Position-time graph, speed and velocity, Uniform and non-uniform motion, average speed and instantaneous velocity.

Uniformly accelerated motion, velocity-time, position-time graphs, relations for uniformly accelerated motion (graphical treatment).

Elementary concept of differentiation and integration for describing motion.

Scalar and vector quantities: Position and displacement vectors, general vectors and notation, equality of vectors, multiplication of vectors by a real number; addition and subtraction of vectors. Relative velocity.

Unit vector; Resolution of a vector in a plane – rectangular components, Motion in a plane, Cases of uniform velocity and uniform acceleration-projectile motion. Uniform circular motion.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publishers.

C

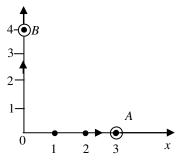
| Q.No.            | Topic/Question                                                                                                                                                                                                                                                                                                          | Page No. |  |  |  |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| Unit 2-C Vectors |                                                                                                                                                                                                                                                                                                                         |          |  |  |  |
| 1.               | Explain position and displacement vector? With Example.                                                                                                                                                                                                                                                                 | 1        |  |  |  |
| 2.               | <ul> <li>Explain the following with examples:</li> <li>i) Unit Vector</li> <li>ii) Equal Vector</li> <li>iii) Multiplication of a vector by real number</li> </ul>                                                                                                                                                      | 3        |  |  |  |
| 3.               | a) State triangle law of vector addition?<br>b) Find $ \vec{R} $ and direction of $\vec{R}$ resultant?                                                                                                                                                                                                                  | 5        |  |  |  |
| 4.               | a) State Parallelogram law of vector addition?<br>b) Find $ \vec{R} $ and direction of resultant $\vec{R}$ ?                                                                                                                                                                                                            | 7        |  |  |  |
| 5.               | Discuss crossing the river<br>a) Shortest time<br>b) Shortest path.                                                                                                                                                                                                                                                     | 9        |  |  |  |
| 6.               | Explain rectangular components of a vector in 2-Dimension and 3-Dimension.                                                                                                                                                                                                                                              | 13       |  |  |  |
|                  | Unit 2-D                                                                                                                                                                                                                                                                                                                |          |  |  |  |
| 1.               | <ul> <li>What is a projectile? A particle is projected horizontally with a speed u from a building of height h.</li> <li>a) Prove path followed by projectile is parabola.</li> <li>b) Find time of flight.</li> <li>c) Find horizontal range.</li> <li>d) Find velocity of particle at any instant of time.</li> </ul> | 1        |  |  |  |
| 2.               | <ul> <li>A particle is projected with initial speed u making angle θ with the horizontal.</li> <li>a) Prove path followed by projectile is parabola.</li> <li>b) Find time of flight.</li> <li>c) Find horizontal range.</li> <li>d) Find maximum height reached.</li> </ul>                                            | 3        |  |  |  |
| 3.               | <ul><li>a) Define Angular Displacement? Units? Dimensions?</li><li>b) Define Angular Velocity? Units? Dimensions? With examples.</li></ul>                                                                                                                                                                              | 5        |  |  |  |
| 4.               | Relationship between linear velocity $v$ and angular velocity $\omega$ ? (Scalar Relation).                                                                                                                                                                                                                             | 7        |  |  |  |
| 5.               | <ul><li>a) Define "Angular Acceleration"?</li><li>b) Relation between "Linear Acceleration" and "Angular Acceleration"?</li></ul>                                                                                                                                                                                       | 7        |  |  |  |
| 6.               | Define Time Period T, Frequency f. Write relation between T and f, relation between $\omega$ and f.                                                                                                                                                                                                                     | 9        |  |  |  |
| 7.               | Prove centripetal acceleration $=\frac{v^2}{r}$                                                                                                                                                                                                                                                                         | 9        |  |  |  |
| 8.               | Write expression of $\vec{a}_c$ and $\vec{a}_r$ for "non uniform circular motion".<br>(where $a_c \rightarrow$ centripetal acceleration, $a_r \rightarrow$ radial acceleration).                                                                                                                                        | 11       |  |  |  |

# Q.1. Explain position and displacement vector? With Example.

# Ans. Position Vector:-

A vector used to represent position of a point/particle is called position vector.

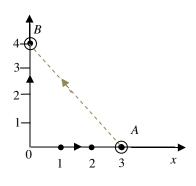
**Example 2**:-  $\overrightarrow{OB} = 4\hat{j}$  Is position vector of point *B*.



#### Displacement Vector:-

Displacement vector is a vector marked from initial position to final position of a particle or object.

| $A \rightarrow$ initial position                             |
|--------------------------------------------------------------|
| $B \rightarrow$ final position                               |
| $\overrightarrow{AB} \rightarrow \text{displacement vector}$ |
|                                                              |



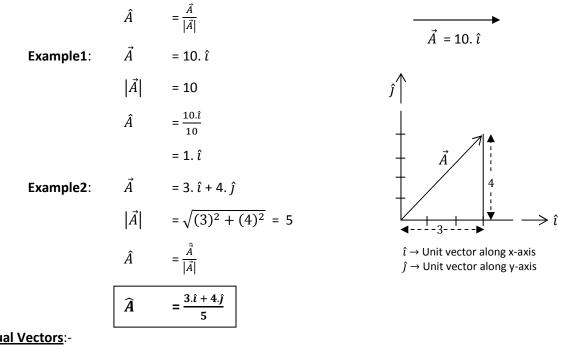
# 1

3

- Q2. **Explain the following with examples:** 
  - i) **Unit Vector**
  - ii) **Equal Vector**
  - iii) Multiplication of a vector by real number

### Ans.i) Unit Vector:-

A Vector having magnitude unity is called a unit vector. It is denoted by  $\hat{A}$ 



ii) Equal Vectors:-

Two vectors  $\vec{A}$  and  $\vec{B}$  are said to be equal vectors, if they have equal magnitude and same direction.

|           |   |                                 |         | $\hat{A} = 10. \hat{i}$ |
|-----------|---|---------------------------------|---------|-------------------------|
| Example:- | Â | = 10. $\hat{\iota}$ , $\vec{B}$ | = 10. î | $\hat{B} = 10. \hat{i}$ |

 $\vec{A} = 2.\hat{\iota}$ 

 $3.\vec{A} = 6.\hat{i}$ 

These two vectors  $\vec{A}$  and  $\vec{B}$  are equal.

### iii) Multiplication of a vector by real number:-

If a vector is multiplied by a number *n*, magnitude of vector becomes *n* times but direction remains same.

À Example:-= 2. î And  $3(\vec{A}) = 3(2, \hat{\iota})$ 

= 6. î

# Q.3. a) State triangle law of vector addition? b) Find |R| and direction of R resultant?

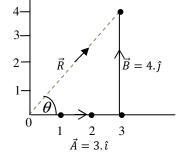
= ?

Ans.a) Triangle Law:-

If two vectors acting on a particle are taken as two sides of a triangle in one order, then third side of triangle taken in opposite order gives resultant vector.

Example:-  $\vec{A} = 3.\hat{\iota} \quad \vec{B} = 4.\hat{j}$  $\vec{R} = \vec{A} + \vec{B}$  $= 3.\hat{\iota} + 4.\hat{j}$  $(\vec{R}) = 5$ , Direction as shown in Fig.

Making angle  $\theta$  with x-axis



b) <u>Proof</u>:-|*R*|

$$|\vec{R}| = \sqrt{A^2 + B^2 + 2.A.B.\cos\theta}$$
$$(OQ)^2 = (ON)^2 + (QN)^2$$
$$= (OP + PN)^2 + (QN)^2$$
$$= (A + B.\cos\theta)^2 + (B.\sin\theta)^2$$

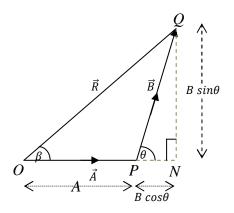
$$= A^2 + B^2 \cos^2\theta + 2AB \cos\theta + B^2 \sin^2\theta$$

 $= A^2 + B^2 \left( cos^2\theta + sin^2\theta \right) + 2AB \cos\theta$ 

$$= A^2 + B^2 + 2AB \cos\theta$$

 $OQ = \sqrt{A^2 + B^2 + 2.A.B.\cos\theta}$  $|\vec{R}| = \sqrt{A^2 + B^2 + 2.A.B.\cos\theta}$  $\ln \Delta \text{ QON, } \tan \beta = \frac{QN}{ON}$  $= \frac{B\sin\theta}{OP + PN}$  $\tan \beta = \frac{B\sin\theta}{A + B\cos\theta}$ 

•  $\beta$  is the angle which resultant makes with vector A.

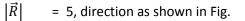


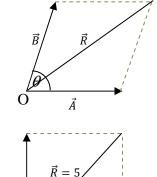
# Q.4. a) State Parallelogram law of vector addition? b) Find |R| and direction of resultant R?

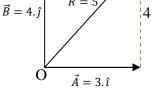
Ans.a) Parallelogram Law:-

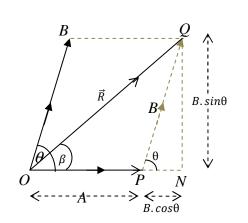
It states that if two vectors acting on a particle at the same time be represented in magnitude and direction by the two adjacent sides of parallelogram drawn from a point, their resultant vector is represented in magnitude and direction by the diagonal of parallelogram drawn from the same point.

Example:-  $\vec{A} = 3.\hat{\iota}, \ \vec{B} = 4.\hat{j}$ 









 $\therefore QN \perp ON$ 

Draw  $QN \perp ON$  extended line OP to N

In  $\triangle$  OQN,  $(OQ)^2 = (QN)^2 + (ON)^2$   $= (B. sin\theta)^2 + (OP + PN)^2$   $= (B. sin\theta)^2 + (A + B. cos\theta)^2$   $= B^2 sin^2\theta + A^2 + B^2 cos^2\theta + 2AB cos\theta$   $OQ = \sqrt{A^2 + B^2 + 2.A.B.cos\theta}$   $|\vec{R}| = \sqrt{A^2 + B^2 + 2.A.B.cos\theta}$ In  $\triangle$  QON, tan  $\beta = \frac{QN}{ON}$   $= \frac{B sin\theta}{OP + PN}$  $\tan \beta = \frac{B sin\theta}{A + B cos\theta}$ 

•  $\beta$  is the angle which resultant makes with vector A.



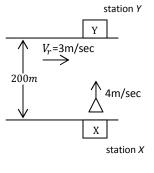
# Q5. Discuss crossing the river

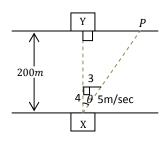
- a) Shortest time
- b) Shortest path.

Ans. Concept Example1:-

| Width of river              | = 200m    |
|-----------------------------|-----------|
| Boat's speed in still water | = 4 m/sec |
| River's speed               | = 3m/sec  |

- i) Find time taken by the boat to cross the river?
- ii) Find time taken by the man to reach station *Y*, along the bank, if walking speed of the person is 6m/sec?





i)

Let 
$$V_b$$
= 4m/sec,  $V_r$  = 3 m/sec and  $\theta$  = 90°

$$\therefore \text{ Resultant, } |\vec{R}| = \sqrt{A^2 + B^2 + 2AB \cos\theta}$$

$$V_{resultant} = \sqrt{(4)^2 + (3)^2 + 2.4.3 \cos90}$$

$$= \sqrt{16 + 9}$$

$$V_{resultant} = \sqrt{25} = 5 \text{m/sec}$$

$$\therefore \quad \text{Tan } \theta = \frac{3}{4} = \frac{YP}{XY}$$

$$\Rightarrow \quad \frac{3}{4} = \frac{YP}{200}$$

$$\Rightarrow \quad \text{YP} = 150 \text{ m}$$

$$\therefore \text{ In rt. Angled } \Delta XYP$$

XP = 
$$\sqrt{(150)^2 + (200)^2}$$
  
XP = 250 m  
∴ Time taken to cross river,  
t =  $\frac{XP}{V_{resultant}}$   
=  $\frac{250}{5}$   
t = 50 sec

| <u>Alternate</u>                                                        |  |  |  |
|-------------------------------------------------------------------------|--|--|--|
| Time, $t = \frac{displacement along Y - axis}{velocity along Y - axis}$ |  |  |  |
| $=\frac{200\ m}{4\ m/sec}$                                              |  |  |  |
| = 50 sec                                                                |  |  |  |

ii) Distance travelled by walking = 150m (YP = 150m)

Velocity of person = 6 m/sec  
Time taken, 
$$t$$
 =  $\frac{150}{6}$   
= 25 sec

# Concept Example2:-

| Width of river | = 200m   |
|----------------|----------|
| Boat's speed   | = 5m/sec |
| River's speed  | = 3m/sec |

- i) Find the angle,  $\theta$  at which boat should move so that it reached exactly the opposite station *Y*.
- ii) Find time taken by the boat to cross the river.

Sol:-

ii)

i)

Sin 
$$\theta$$
 =  $\frac{3}{5}$   
 $\therefore$   $\theta$  =  $\left(\frac{3}{5}\right) sin^{-1}$   
Resultant velocity,  $\left|\vec{V}_{res}\right|$  =  $\sqrt{25-9}$ 

$$=\sqrt{16}$$

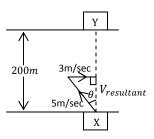
= 4 m/sec

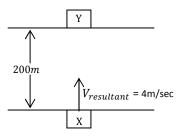
Distance = 200m

Velocity = 4m/sec

$$\therefore$$
 Time taken  $=\frac{200}{4}$ 

= 50sec







# Q6. Explain rectangular components of a vector in 2-Dimension and 3-Dimension.

#### Ans.a) RECTANGULAR COMPONENTS OF A VECTOR IN A PLANE

When a vector is splitted into two component vector at right angles to each other, the component vector are called rectangular components of a vector.

$$A_{x} = A \cos \theta$$
$$A_{y} = A \sin \theta$$
$$A = \sqrt{A_{x}^{2} + A_{y}^{2}}$$

Sol:-
$$\begin{vmatrix} \vec{A} \\ = 2\sqrt{2} \text{ at } \theta = 45^{\circ} \text{ with x-axis Find } A_x \text{ and } A_y \end{vmatrix}$$
  
Sol:-
$$\begin{vmatrix} A_x \\ A_x \\ = A \cos \theta \\ = 2\sqrt{2} \cdot \cos 45 \\ = 20 \\ \begin{vmatrix} A_y \\ A_y \\ A_y \\ = A \sin \theta \\ = 2\sqrt{2} \cdot \sin 45 \\ = 2\sqrt{2} \cdot \sin 45 \\ = 2\sqrt{2} \cdot \frac{1}{\sqrt{2}} \\ = 2 \end{vmatrix}$$

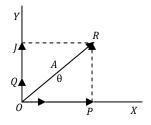


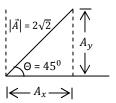
A = 
$$A_x i + A_y j + A_z k$$
  
A =  $\sqrt{A_x^2 + A_y^2 + A_z^2}$ 

If  $\alpha,\,\beta$  and  $\gamma$  are the angles which the  $\vec{A}$  makes with X, Y, and Z axes respectively, then

Here  $\cos\,\alpha,\,\cos\,\beta$  and  $\cos\,\gamma$  are called the direction cosines of the vector A

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$





#### Unit 2-D

- <sup>1</sup> Q1. What is a projectile? A particle is projected horizontally with a speed *u* from a building of height *h*.
  - a) Prove path followed by projectile is parabola.
  - b) Find time of flight.
  - c) Find horizontal range.
  - d) Find velocity of particle at any instant of time.

### Ans. **PROJECTILE**

Projectile is a body thrown with some initial velocity with the horizontal direction, and then allowed to move under the action of gravity alone, it's path is called *trajectory*.

Projectile moves under the combined effect of:

- 1. A uniform velocity in the horizontal direction, which would not change.
- 2. A uniformly changing velocity (i.e. increasing or decreasing) in the vertical direction due to gravity.

X-axis analysis is independent of Y-axis analysis.

# **PROJECTILE GIVEN HORIZONTAL PROJECTION**

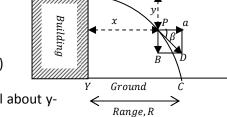
- a) 1. Horizontal velocity u, which remains constant throughout the motion (neglecting the air friction).
  - 2. Vertical velocity which increases due to gravity. Initial value of this velocity at O is zero.

# Path of projectile

$$x = 0 + ut + \frac{1}{2}(0)t^{2} = ut \qquad ---- (1)$$
  

$$y = 0 + (0)t + \frac{1}{2}gt^{2} = \frac{1}{2}gt^{2} - --- (2)$$
  

$$y = kx^{2} \qquad ---- (3) \quad \text{(Eliminating } t\text{)}$$



0 u

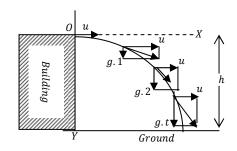
Χ

This is an equation of a parabola, which is symmetrical about y-axis.

b) Time of Flight

As 
$$y = y_0 + u_y t + \frac{1}{2} a_y t^2$$
  
 $h = 0 + 0 \times T + \frac{1}{2} gT^2$   
Or  $T = \sqrt{2h/g}$  ------(4)

As 
$$x = x_0 + u_x t + \frac{1}{2} a_x t^2$$
  
 $R = 0 + u \sqrt{2h/g} + \frac{1}{2} \times 0 \times T^2$   
 $R = u \sqrt{2h/g}$  -----5



d) Velocity of the object (i.e. projectile) at any instant.

$$v = \sqrt{v_x^2 + v_y^2} = \sqrt{u^2 + g^2 t^2}$$

$$v = \sqrt{u^2 + g^2 \cdot t^2}$$
.....6

1

- Q2. A particle is projected with initial speed u making angle  $\theta$  with the horizontal.
  - a) Prove path followed by projectile is parabola.
  - b) Find time of flight.
  - c) Find horizontal range.
  - d) Find maximum height reached.

#### Ans

a) Motion along horizontal direction, OX

$$x = 0 + (u \cos \theta) t + \frac{1}{2} (0) t^{2} = u \cos \theta t$$

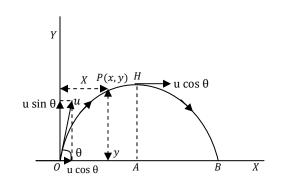
or 
$$t = \frac{x}{u \cos \theta}$$

Motion along vertical direction, OY

$$y = 0 + u \sin \theta t + \frac{1}{2} (-g) t^{2}$$
Or
$$y = (u \sin \theta) t - \frac{1}{2} gt^{2}$$
-----2

Eliminating t from  $\begin{pmatrix} 1 \end{pmatrix}$  and  $\begin{pmatrix} 2 \end{pmatrix}$ 

y = u sin 
$$\theta \left(\frac{x}{u \cos \theta}\right) \frac{1}{2} g \left(\frac{x}{u \cos \theta}\right)^2$$
  
Or   
Y = x tan  $\theta - \frac{1}{2} \left(\frac{g}{u^2 \cos^2 \theta}\right) x^2$ 



This is an equation of a parabola.

### b) Time of flight, T

It is the total time for which the object is in flight (i.e. remains in air), while going from *O* to *B*. It is denoted by *T*.

Time of ascent = time of descent = t (say) As, total time of flight = time of ascent + time of descent T = t + t = 2tOr t = T/2Motion along Y-axis  $V_y = u_y + a_y t$   $0 = u \sin \theta + (-g) T/2$   $T = \frac{2 u \sin \theta}{g}$ Horizontal Pange *P* 

#### c) Horizontal Range, R

It is the horizontal distance covered by the object between its point of projection and the point of hitting the ground. It is denoted by *R*.

$$R = u \cos \theta \times T = u \cos \theta \times \frac{2 u \sin \theta}{g}$$
$$= \frac{u^2}{g} 2 \sin \theta \cos \theta$$
$$R = \frac{u^2 \sin 2 \theta}{g}$$

#### d) Maximum height, H

It is the maximum vertical height attained by the object above the point of projection during its flight.

$$H = 0 + (u \sin \theta) \times \frac{u \sin \theta}{g} + \frac{1}{2} (-g) \left(\frac{u \sin \theta}{g}\right)^{2}$$
$$Or h = \frac{u^{2}}{g} \sin^{2} \theta - \frac{1}{2} \frac{u^{2} \sin^{2} \theta}{g} = \frac{u^{2} \sin^{2} \theta}{2g}$$
$$H = \frac{u^{2} \sin^{2} \theta}{2g}$$

3

5

Q3. a) Define Angular Displacement? Units? Dimensions?b) Define Angular Velocity? Units? Dimensions? With examples.

## Ans.

a) **<u>Angular Displacement</u>**:- Angle traced by radius vector *r*.

Angular Displacement,  $\Theta = \frac{l}{r}$   $I \rightarrow \text{length of arc}$  $r \rightarrow \text{radius of circle}$ 

<u>**Units</u>:- S.I. Unit \rightarrow radians (rad)**</u>

**<u>Dimensions</u>**:-  $[\Theta]$  =  $\frac{[l]}{[r]} = \frac{[L]}{[L]}$  $[\Theta]$  =  $[M^0 L^0 T^0]$  Dimensionless

b) Angular Velocity:-

Direction:-

"Time rate of change of Angular displacement".

Angular Speed,  $\omega = \frac{d\theta}{dt}$ Angular velocity,  $\vec{\omega} = \frac{\vec{d\theta}}{dt}$ 

Towards the reader for ACW.

Away from the reader for CW.

 $\vec{\omega}$  Axial Vector





 $\overrightarrow{\omega}$  away from reader when particle moves in anticlockwise direction



 $\overrightarrow{\omega}$  towards the reader when particle moves in clockwise direction



S.I. Units  $\rightarrow \frac{rad}{sec}$ Units:- $[\omega] = [M^0 L^0 T^{-1}]$ **Dimensions**:-Find angular speed of hour hand of a clock. Example. Angular covered by hour hand, Sol.  $= 2\pi \text{ rad} (360^{\circ})$ θ Time taken by hour hand to complete = 12 hrs One circle  $=\frac{\theta}{t}$ Angular speed, ω  $= \frac{2\pi \text{ rad}}{12 \text{ hrs}}$  $=\frac{\pi}{6}$  rad/hr

Problem. Find angular speed of minute hand of a clock?

Ans. (Ask your friend for the same)

# Q4. Relationship between linear velocity v and angular velocity $\omega$ ? (Scalar Relation).

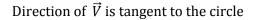
Ans. A particle moving from P to Q covering angle  $d\theta$  (in time dt)

$$v = \frac{dl}{dt} \text{ and } \omega = \frac{d\theta}{dt}$$

$$v = \frac{dl}{dt}$$

$$v = r\left(\frac{d\theta}{dt}\right) \qquad \left\{d\theta = \frac{dl}{r}\right\}$$

$$v = r. \omega$$



# Q5. a) Define "Angular Acceleration"? b) Relation between "Linear Acceleration" and "Angular Acceleration"?

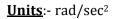
### Ans.a) Angular Acc:-

Angular acc is defined as rate of change of angular velocity w.r.t time.

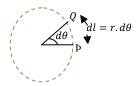
$$\alpha = \frac{d\omega}{dt}$$

# Relation between a and $\propto$

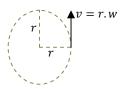
acc, 
$$a = \frac{dv}{dt}$$
  
 $a = \frac{d}{dt}$  (r.  $\omega$ ) [As  $v = r. \omega$ ]  
 $a = \left(\frac{d\omega}{dt}\right) r$   
 $a = \alpha . r$   
**a** = **r** .  $\alpha$ 



**<u>Dimensions</u>**:-  $[\alpha] = [M^0 L^0 T^{-2}]$ 







Q6. Define Time Period T, Frequency f. Write relation between T and f, relation between  $\omega$  and f.

Ans.

$$T = 1/f$$

$$f = 1/T$$

$$f \cdot T = 1$$
Angular speed, 
$$\omega = \frac{Angle Covered}{Time Taken}$$

$$\omega = \frac{2\pi}{T}$$

$$\omega = 2\pi f$$

Prove centripetal acceleration  $=\frac{r}{r}$ Q7.

"Particle is moving in a circle with a uniform speed". Ans.

> Position vector triangle OAB is drawn as shown in fig. II Velocity vector triangle PQR is drawn as shown in fig. III

In fig. II  
In fig. III  

$$d\theta = \frac{dr}{r}$$
 -----(1)  
In fig. III  
 $d\theta = \frac{dv}{v}$  -----(2)  
From (1) & (2)

In fig. III

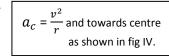
$$\frac{dv}{v} = \frac{dr}{r}$$
$$dv = \frac{v}{r} \cdot dr$$
 -----(3)

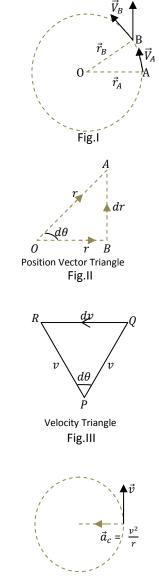
As per definition

acc, a 
$$= \frac{dv}{dt}$$
  
 $= \frac{v}{r} \left(\frac{dr}{dt}\right)$   
 $= \frac{v}{r} \cdot v$   
a  $= \frac{v^2}{r}$   
centripetal acceleration  $a_c = \frac{v^2}{r}$ 

#### $\vec{a} = \frac{\vec{dv}}{dt}$ Direction:-

Direction of  $\vec{a}$  is same as that of  $\vec{dv}$  in fig.III Direction of  $\vec{a}$  is opposite to  $\vec{r}$ i.e. towards Centre.







11

- Q8. Write expression of  $\vec{a}_c$  and  $\vec{a}_r$  for "non uniform circular motion". (where  $a_c$   $\rightarrow$  centripetal,  $a_r$   $\rightarrow$  radial acc.)
- Ans. Centripetal acceleration,

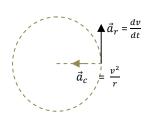
$$\vec{a}_c = \frac{v^2}{r}$$

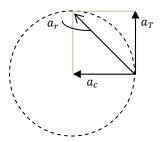
Tangential acceleration,

$$\vec{a}_T = \frac{dv}{dt}$$

$$a_{res} = \sqrt{a_c^2 + a_T^2}$$

$$= \sqrt{\left(\frac{v^2}{r}\right)^2 + \left(\frac{dv}{dt}\right)^2}$$





# Example:

A particle is moving in a circle of radius 1 metre with it's speed increasing at 3m/sec in 1sec at an instant when its speed is 2m/sec. Find:

- a) Centripetal acc.
- b) Tangential acc.
- c) Resultant acc.

#### Solution:

a) Centripetal acc,  $a_c$ 

$$a_c = \frac{v^2}{r} = \frac{(2)^2}{1} = \frac{4m}{sec^2}$$

b) Tangential acc,  $a_T$ 

$$a_T = \frac{dv}{dt} = \frac{3m/sec}{1sec} = \frac{3m}{sec^2}$$

c) Resultant acc, *a<sub>resultant</sub>* 

$$a_{resultant} = \sqrt{a_c^2 + a_T^2}$$
$$= \sqrt{4^2 + 3^2}$$
$$= \frac{5m}{sec^2}$$

